Search results for "Diazonium salt"
showing 6 items of 6 documents
An insight into the functionalisation of carbon nanotubes by diazonium chemistry: Towards a controlled decoration
2014
The derivatisation of materials including iron, gold, and carbon by addition of diazonium salts is a reliable process to tune their interfacial interaction with the surrounding media. In this regard, the functionalisation of carbon nanostructures by diazonium chemistry is a versatile strategy to obtain soluble nanomaterials with degrees of functionalisation among the highest ever reported. Starting from these premises we have studied the functionalisation of multi-walled carbon nanotubes by addition of the aryl diazonium salts generated in situ by treatment of 4-methoxyaniline with isopentylnitrite. Following a thorough purification and characterisation protocol (UV-vis, TGA, ATR-IR, cyclic…
Modulation of the organic heterojunction behavior, from electrografting to enhanced sensing properties
2019
International audience; The energy barrier of an organic heterojunction built on ITO electrodes and made from a low conductive sublayer (Cu(F16Pc)) covered by a highly conductive semiconductor (LuPc2) is modulated by electrografting of organic layers before depositing the sublayer. Impedance spectroscopy clearly demonstrates the increase of the energy barrier at the ITO – sublayer interface. Additionally, the electrografting is a versatile and promising method for the tuning of heterojunctions. The I(V) characteristics of the heterojunctions are highly modified by the electrografting. The same electromodifications of electrodes carried out on LuPc2 resistors lead to a modification of their …
Radical Cyclization and 1,5-Hydrogen Transfer in Selected Aromatic Diazonium Salts
2014
2-(Methyl(3-methyl-1-phenyl-1H-pyrazol-5-yl)carbamoyl)thiophene-3-diazonium hydrogen sulfate 20, 2-(methyl(3-methyl-isoxazol-5yl)carbamoyl)-benzenediazonium hydrogen sulfate 21 and 2-(methyl(phenyl)carbamoyl)-benzenediazonium hydrogen sulphate 22 were synthesized and reacted with a CuSO4/NaCl/ascorbic acid combination to give complex mixtures. The structures of the reaction products were elucidated, depending upon the pathways followed. Compound 20 almost exclusively afforded an Ar-5 cyclization product and trace amounts of the product derived from a competing Ar-6 Pschorr closure. In the case of compound 21, the Ar-6 cyclization was not observed, while the Ar-5 cyclization and 1,5-hydrogen…
Unravelling Radicals Reactivity Towards Carbon Nanotubes Manipulation/Functionalization
2016
Carbon Nanotubes (CNTs) chemistry is under constant evolution, as a consequence of the deep interest of the scientific community in finding new applications for these versatile materials. New and old synthetic protocols are used for improving the control of the functionalization degree of the final materials and for offering to scientists the possibility to fine-tune their final properties. In this Review, we focus the attention on radical reactions, a class of protocols characterized by small number of steps, different degrees of functionalization and enhanced solubility of the final modified CNTs, in the desired environment. The most well-known protocols are analysed providing some releva…
Modifications électrochimiques de surfaces et dispositifs électroniques organiques
2018
Organic electronics remains a fruitful research field thanks to the diversity of molecular structures reachable by organic synthesis. Molecular materials offer convenient shaping processes, such as solution processing techniques, which can be used for the fabrication of organic devices on plastic substrates.Our works can be summarized as the elaboration of conductometric devices thanks to electrochemistry and the study of their electrical and sensing properties. They deal with two topics: the development of new transducers based on substituted polyanilines and phthalocyanines and the study of the influence of electrochemical modifications on the behavior of known devices.We first developped…
Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy
2020
The synthesis of a drug delivery platform based on graphene was achieved through a step‐by‐step strategy of selective amine deprotection and functionalization. The multifunctional graphene platform, functionalized with indocyanine green, folic acid, and doxorubicin showed an enhanced anticancer activity. The remarkable targeting capacity for cancer cells in combination with the synergistic effect of drug release and photothermal properties prove the great advantage of a combined chemo‐ and phototherapy based on graphene against cancer, opening the doors to future therapeutic applications of this type of material.